
Some Integrals of the Arctangent Function 

By M. L. Glasser 

Integrals of the form f ' (tan-'cz)2nR(z)dz, where R(z) is an even rational ex- 
pression in z, occur in the theory of localized magnetic moments in metals. Since 
integrals of this general type do not appear to be tabulated, we present here a 
method for evaluation as well as some interesting related material. 

By partial fraction decomposition all integrals of the above type may be re- 
duced to the form 

(1) In(a) (tan' cz)2f(z2 + a2)'dz 

where a is not required to be real. Also, by a simple change of variable, only the 
case c = 1 need be considered. By writing this as half the integral from - o to 
co and making the substitution z = tan 0/2 this may be brought into the form 
2- 28')(a2 ? 1)2 J71,r 2n(1 + X cos 0)-1dO, where X = (a2- 1)/(a2 + 1). In terms 
of z = eio, this may be written 

(2) In(a) = (-l)n+li2-2n(a2 _ l)-1 (z - zo)-'(z - zi)-l'ln2n zdz 

where F1 is the contour z = e@, -7r < 0 < 7r and zo = 1/zi = (1-a)/(? + a). 
For the moment we assume 0 < a < 1 so zo > 0 and lies inside the unit circle. 
Closing Pi by the loop r2: z = pe?ir, 0 < p < 1, we trap the pole at zo and thus 

(3) In(a) = (-1) 27r { 1n2nzo + 
f I ln2nzdz A 

22(a2 -1) (zo - z1) 27ri r (z -zO)(z -zl) 

The integral remaining in (3) is 

(4) J 1 I l (ln x_ -7r)2 - (ln x + i7r)2n 

(4) = ~~~27ri o (x?+z0) (x?+z1) dz 

This can be reduced to a sum of Kummer's Lambda functions [1] 

(5) 1An 1 (x) 
- 

| nI du 

for example. However, since the resulting formula is somewhat unwieldy, the 
method will be illustrated by the cases n = 1, 2. We have 

J= -2(z1 - zo-1 f ln x(x - zo)-1 -(x + z1)-1' dx 
(6) 1 

= 
zo 

(1/2) In zo In( + z?) + i2( ?--L ( U2 ) 
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where Li2 (x) is the Euler dilogarithm [1]. Using the relation Li2 (x) + Li2 (1 - x) 
-r2/6 - log x log (1 - x), we find 

(7) I,(a) = (r/4a){ - 1n2( - 2 Li2Q- 2)} 

Since both sides of this equation are analytic functions of a for Re a > 0, the 
result is valid for all positive a. In addition, taking the limit a -* 0 leads to the 
known result I1(0) = r ln 2. The dilogarithm can be evaluated in closed form for 
a number of special cases [1], which leads to the apparently new results 

I, (-V5) = (r/4V5) {(37r 2/10) - 2n2( 1 25)} 

I1(3) = (X/12) { (X2/3) - In2 2} 

I( 1(V/5 - 2) =4(V5- 2) + ln2( V )+ 

4 (N/5 
- 2 __ -0 2/ ~ 

I, (V\5 ? 2) = 7r f'lw 112___I_21 
- 

4(V5 + 2) 
{ 30 5 2)> 

Other than for the trivial case a = 1, these are the only real values of a for which 
11(a) may be expressed in elementary terms. The derivative of I1(a) is related to 
entry 3.813(5) of Gradshteyn and Ryzhik's tables [2] so (7) could also be obtained 
from that result by integration. 

The case n = 2 leads to 

(9) |(tan-' Z) dz = (7r/4a) { 74rO + 7, Li2 + 1 Li 6 a-i4a 
f 2OO a2 40a+1a+1/ 

in terms of tabulated functions [1]. Unfortunately, the tetralogarithm cannot be 
evaluated in closed form for many special values. The case a -> 0 leads to 

(10) x4 csc2 xdx = i In2- 4 g-(3) 

This integral can be obtained from [2, Eq. 3.748.2, p. 418], which leads to 

r7/2 c ooA 

(11) xP+1 csc2xdx = (p + 1) (i/2)p p-1 -2 E (p + 2k)-12-2k (2k)} 

in terms of the Riemann Zeta function. Thus, for p 3 we have the interesting 
relation 

2 1o 
(12) =4 { (2k)/(4k(2k + 3)) + -ln 2- 9 k~=1 2 

In a similar way we can sum the series Ek=l t(2k)2-2k/(2k + p) for any odd p. 
The method used here can also be extended to arbitrary integrals of the form 

f0 (tan-' z)"R(z)dz where n and R are not required to be even. When symmetry is 
not invoked, however, the Cauchy principal part rather than the residue is involved. 

Finally, it is emphasized that a is not restricted to real values, so that cases 
such as R(z) = (1 + z6)-l may also be treated. The polylogarithms of complex 
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argument have been studied in detail [1] and we also obtain results as 

(13) /0 (Z2a3 Z) 42dz = (l + 2i) f7w2 1 2 +r Iln2 
- 3)- 4i20 '48 -4l2+ 4 23() 

where A(2) is Catalan's constant 0.915965 **-. Taking the real and imaginary 
parts of both sides of (13) gives 

|0 (ta-1Z)2 d 7r 7r2 1 n22 
I+1n2 

4 2Z (14) oz -6z2+2548 44 
00 z2(tan'Z) 2 dz=- r2 -1n 2+ 7rn2 

|z -6z2+25 C) 8 48 4 4 J 

These are only a few of the special cases which can be expressed in closed form. 
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